

North Sandwich Stormwater Conveyance Analysis Study

City of Sandwich Flood Reduction Program

Presented By:

Timothy N. Paulson, P.E., CFM Jeffrey W. Freeman, P.E., CFM, LEED AP Tyler A. Meyer, E.I., CFM Engineering Enterprises, Inc.

> Stakeholder Outreach Meeting City of Sandwich, IL

> > October 1, 2018

Presentation Overview

Acronym Soup/Definitions

Overview and Project Approach

Stakeholder Outreach Survey Summary

Stormwater Modeling

Investigation Areas; Causes, Solutions, and Cost Estimates

Q&A

Acronym Soup/Definitions

Acre-Foot= 1 foot of water over 1 acre of land – Stormwater Storage is expressed in terms of Acre-Feet of storage

CFS= Cubic Feet per Second – Stormwater Conveyance is expressed in terms of CFS

Critical Duration: The duration of the storm event that produces the peak runoff flow rate for a watershed area.

Design Storm Event: A rainfall event of a specific rainfall total over a designated duration and distribution

Hydraulic Grade Line: The surface of the water profile flowing in the storm sewer or when surcharging the elevation the water level would rise to above the surface

Acronym Soup/Definitions

Recurrence Interval: Designation to describe frequency of Design Storm Events (i.e. 10 year storm or 100 year storm)

Surcharging/Flooding (in context of Storm Sewer Modeling): When the storm sewer runs out of capacity for the runoff from the Design Storm Event the system surcharges; when the system surcharges flooding occurs at the storm sewer structures

Stormwater Conveyance: Transporting runoff from one place to another

Stormwater Storage: Collection of excess runoff until conveyance is available

Overview and Project Approach

Stormwater System Conveyance Analysis

- Base Mapping & Surveying
- Stakeholder Outreach
- Sub-Watershed Delineations
- Existing Conditions Model
- Overland Flow Route Analysis
- Proposed Conditions Model
- Cost Estimates
- Implementation Plan
- Ordinance Review
- Report

Stakeholder Outreach Survey Summary

Survey Statistics (8/22/18)

- 1,855 Delivered
- ♦ 385 Respondents
- 20.8% Return Rate
- ♦ 187 Experienced Flooding

Stakeholder Outreach Survey Summary

Stakeholder Outreach Survey Summary

Survey Respondent Flooding Frequency

Existing Conditions - Modeling

- Sub-Watershed Delineation
 - ➔ City One Foot Topography
 - ➔ Field Investigation and Survey
- Build Existing Conditions Model
 - → Existing Storm Sewer, Basins, Depressional Storage, Overflows
 - → City Atlas Maps, Record Drawings, Previous Studies
 - ➔ Rims, Inverts, Connections, Storage Volumes
- Model Inputs/Assumptions
 - ➔ Percent Impervious
 - ➔ Initial Storage
 - ➔ Infiltration
 - ➔ Routing

Existing Conditions - Modeling

- Results
 - ➔ Run of series of Design Storm Events
 - \oplus 2, 5, 10 year design storms for storm sewer
 - \oplus 10, 25, 50, and 100 year for overland flooding
 - ➔ Critical Duration for Storm Sewer
 - ⊕ 1 hour duration
 - ➔ Critical Duration for Storage, Flooding and Overflows
 - ⊕ 24 hour duration

Existing Conditions – EPASWMM Model

Existing Conditions – Profile Exhibit

SWMM 5

Page 1

Proposed Conditions

- Identify System Wide and Regional Improvements to Address Key Problem Areas
 - ➔ Sandhurst
 - ➔ Fieldcrest
 - ➔ Downtown Storm Sewer System
- ♦ 10 Year Design Capacity for Storm Sewers
 - ➔ 1 Hour Critical Duration, Same as Existing
- 100 Year Design Capacity for Large Overflow/Flooding Concerns
 - → 24 Hour Critical Duration, Same as Existing

ANDWICH ILLIMOIS 18 59

Proposed Conditions

- Model Various Alternatives
 - ➔ Increase Storm Sewer Sizes
 - ➔ Additional Storm Sewers
 - ➔ Regional Detention
- Optimize Alternatives to Meet Goals
- Concept Cost Estimates
- System Wide Improvements Allow for Capacity to Address Localized Problems
 - ➔ Knights Park
 - → Local Drainage Relief Concept

Proposed Conditions – Profile Exhibit

18 59

Page 1

SWMM 5

Stormwater System Conveyance Analysis

- Sandhurst
- Fieldcrest
- Downtown Storm Sewer System
- Knights Park
- Local Drainage Relief Sewer Concept

- 76 ac-ft Wetland Basin
- Incorporate into Watershed Planning

- Total Construction Cost = \$2,280,000
- 20 Year Bond = \$167,800/year

Downtown Storm Sewer System

Downtown Storm Sewer System Design Storm Capacity

6th Street Improvements

2nd Street Improvements

Storm Sewer Design Storm Capacity Summary

Knights Park

Concept Construction Cost Summary

		Concept Cost	Annual Bond
٢	Sandhurst Basin Options		
	→ Narrow Basin	<u>\$ 570,000</u>	<u>\$ 42,000 /yr</u>
	\rightarrow Wetland Expansion	<u>\$ 830,000</u>	<u>\$ 61,100 /yr</u>
٢	Fieldcrest Wetland Basin	<u>\$2,280,000</u>	<u>\$167,800 /yr</u>
٢	6 th St Improvements	<u>\$3,600,000</u>	<u>\$265,000 /yr</u>
٢	2 nd St Improvements	<u>\$1,120,000</u>	<u>\$ 82,500 /yr</u>

Local Drainage Relief Sewer Concept

Next Steps

Stormwater System Conveyance Analysis

- Ordinance Review
- Implementation Plan
- Summary Report and Recommendations
 - → Draft Report 10/31/18
 - ⊕ Staff Review
 - → Final Report 11/30/18

Timothy N. Paulson, P.E., CFM

Project Manager Engineering Enterprises, Inc. <u>tpaulson@eeiweb.com</u> (630) 466-6700

Jeffrey W. Freeman, P.E., CFM, LEED AP

Vice President Engineering Enterprises, Inc. <u>jfreeman@eeiweb.com</u> (630) 466-6700

